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Abstract— Learning from demonstration by means of non-
rigid point cloud registration is an effective tool for learning
to manipulate a wide range of deformable objects. However,
most methods that use non-rigid registration to transfer demon-
strated trajectories assume that the test and demonstration
scene are structurally very similar, with any variation explained
by a non-linear transformation. In real-world tasks with clutter
and distractor objects, this assumption is unrealistic. In this
work, we show that a trajectory-aware non-rigid registration
method that uses multiple demonstrations to focus the reg-
istration process on points that are relevant to the task can
effectively handle significantly greater visual variation than
prior methods that are not trajectory-aware. We demonstrate
that this approach achieves superior generalization on several
challenging tasks, including towel folding and grasping objects
in a box containing irrelevant distractors.

I. INTRODUCTION

Learning from demonstration has emerged as a powerful

and effective framework for teaching robots to perform

complex motion skills. A key challenge in learning from

demonstration for robotic manipulation is to transfer a mo-

tion that is demonstrated on one object to another one. When

the manipulation is performed on a deformable object, such

as a rope or a towel, this transfer problem can be especially

challenging, since the demonstration must be warped via

a complex and nonlinear transformation to conform to the

object’s shape. Furthermore, in order for a trajectory transfer

method to generalize to a wide range of tasks without

extensive hand-engineering, the transfer procedure must be

automatic and general.

One practical and general approach to perform trajectory

transfer for deformable object manipulation is to register a

point cloud of the current object to the object used in the

demonstration, determine the transformation function that

maps one object to the other, and transform the demonstrated

trajectory by the same function. This approach has been

shown to produce effective behaviors for tasks such as knot

tying [1], towel folding [2], [3] and simplified surgical sutur-

ing [4]. These approaches register point clouds of the current

scene to the demonstration scene, typically using a color filter

or another masking technique to pick out points of interest.

However, real-world scenes exhibit considerable variation in

shape and color, even when the salient components of the

manipulated objects change only slightly, making it highly
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Fig. 1: A PR2 learned to fold a towel from human demonstrations.

nontrivial to identify or even define the points of interest. If

we can inform the registration process about which points

are actually relevant to the task, we can greatly improve

the robustness and generalization power of registration-based

trajectory transfer.

In this work, we show that such task-aware registration

can be performed by including the demonstrated trajecto-

ries in the registration process, instead of computing the

transformation entirely from the point clouds and only then

applying it to the trajectories. Our trajectory-aware non-rigid

registration method registers multiple demonstration point

clouds to the current scene, computing the transformations

that best put the demonstrated trajectories into agreement.

This agreement is quantified by means of the variance of

time-aligned points along the trajectories. In this approach,

a good transformation is one that puts all of the demonstrated

trajectories close together, even if this means that some points

in the point clouds are not aligned well. This allows our

method to effectively handle distractor objects and irrelevant

variations in the object geometry.

Our main contribution is a trajectory-aware non-rigid reg-

istration method that registers multiple point clouds, together

with their trajectories, to the current scene. We experimen-

tally demonstrate that this approach outperforms standard

trajectory transfer methods based on non-rigid registration

that is not trajectory aware, especially in the presence of

irrelevant distractor objects or when a significant part of

the object being manipulated is irrelevant for the task. We

present experimental results on several challenging tasks

including towel folding and grasping objects in a box con-

taining irrelevant distractors.



II. RELATED WORK

Learning from demonstration, also known as programming

by demonstrations, has emerged as a practical and effec-

tive approach for specifying complex robotic manipulation

skills [5], [6], [7]. One of the principal challenges in learning

from demonstration for robotic manipulation is to adapt the

demonstrated trajectory to the configuration of the objects

at test-time. This adaptation is typically done by means

of features on the manipulated objects [8], [9]. However,

designing features can be challenging and time-consuming.

Several previous approaches have used warping to trans-

fer manipulations between objects. One approach transfers

grasps from a known object onto a new one by finding a

mapping of contact points between the objects [10], [11].

Skill transfer between objects has also been done by us-

ing deformable registrations of RGB-D images [12]. These

approaches focus on finding a registration between single

objects and then using that registration to warp the pose or

the finger position of the manipulator around the surface of

the novel object.

Instead of warping only the points on the surface of

the object, Schulman et al. [1] use non-rigid registration

to compute a warping function for the entire scene. Our

trajectory transfer approach builds on this work. In this

approach, point clouds obtained from a depth sensor are used

to adapt the trajectory. The point cloud in the demonstration

is registered to the current test scene, and a transformation

function is constructed from this registration that transforms

demonstration points into the test scene. This transformation

is then applied to the demonstrated trajectory. This work has

also been extended to jointly optimize the transformation

function and the trajectory in a unified optimization [13] and

to incorporate normals to find better registrations [3]. These

approaches are effective at aligning the trajectory with the

current object. However, the underlying assumption of these

methods is that the test scene is structurally similar to the

demonstration scene. This assumption is reasonable when

both scenes consist, for example, of a single deformable

object. However, when the scenes have multiple independent

parts, this method fails to differentiate between parts that are

more or less salient for generalization.

In order to determine which parts of the scene are most

relevant for the task, we use trajectories from multiple

demonstrations, and choose the registration that puts all of

these trajectories into alignment with the current test scene.

The idea of using multiple demonstrations to improve trans-

fer and generalization has been explored in the context of au-

tonomous flight [14], autonomous driving [15], and dynamic

movement primitives [16]. In the context of deformable

object manipulation, multiple demonstrations have also been

used to recover variable impedance control policies that trade

off force and position errors [2]. However, to the best of

our knowledge, ours is the first method that incorporates

information from multiple demonstrated trajectories into the

objective for non-rigid registration, with the goal of enabling

computing a registration that is most appropriate to the task.

III. PRELIMINARIES

In this section, we review Schulman et al.’s approach [1]

for trajectory transfer, the coherent point drift (CPD) al-

gorithm [17] for point set registration, and the thin plate

spline (TPS) [18], [19] parametrization for non-rigid trans-

formations. Although the topics in this section are not new,

their combination is novel to this work and forms the basic

building blocks for the algorithm presented in this paper,

which combines these approaches together with trajectory-

aware registration in a unified probabilistic framework.

A. Learning from Demonstrations via Trajectory Transfer

In the method proposed by Schulman et al. [1], a demon-

stration consists of a point cloud X of the demonstration

scene and a sequence of end-effector poses. At test time, a

test point cloud Y is observed. The goal is to generalize

the demonstrated trajectory to the new scene. Schulman et

al. use the TPS-RPM algorithm [20] to find a non-rigid

registration that maps points from the demonstration scene to

the new test scene. Then, the registration function is applied

to the demonstration trajectory to get a warped trajectory.

This has the effect that the resulting end-effector motion

incorporates variations in the new scene, which is important

in manipulation tasks. The resulting trajectory does not

incorporate collision avoidance and joint limits, so trajectory

optimization [21] is then used to find a feasible joint angle

trajectory.

When a collection of K demonstrations is available,

D = {D1, . . . ,DK}, a registration function that maps points

from the demonstration scene Xk to the test scene Y is

independently computed for each demonstration Dk, and the

demonstration that incurs the least registration cost is chosen

for trajectory transfer. In this work, we will instead use all

of the demonstrations together, as discussed in Section IV.

The prior method also makes use of the TPS-RPM algorithm

for registration [1]. In this work, we instead use the CPD

algorithm, described in the following subsection, which

provides a substantial improvement in outlier handling, as

shown in our experiments.

B. Coherent Point Drift

The CPD algorithm finds a registration between a

source and target point set, which in our case are

point clouds from a depth camera. Denote the source

point X =
[

x1 · · · xN

]⊤
and the target point set

Y =
[

y1 · · · yM

]⊤
, with points xi,yj ∈ R

D for some

dimension D. The registration problem is to find a transfor-

mation T : RD → R
D that maps source points to target

points.

1) Probabilistic Model: The CPD algorithm considers the

registration of the two point sets as a probability density

estimation problem, where the transformed points in X are

the centroids of a Gaussian mixture model and the points in

Y as the data points generated by this model. An overview

of the probabilistic model is given in Figure 2.

The first N components of the mixture model are Gaussian

on the deformed source points, with mean x̃i = T (xi) and
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Fig. 2: Graphical model describing the generation of target points
yj from a Gaussian mixture based on the source points xi. Each

Gaussian has mean x̃i = T (xi) and variance σ2, zj = i

indicates the component i from which the point yj is generated,
λ controls the regularization of the transformation, and ω is the
outlier probability.

variance σ2. The transformation function T is the warp that

we are trying to recover. An additional uniform component

N + 1 is modeled to explain the generation of noisy and

outlier points.

The prior probability of a point yj being generated from

the uniform component is P (zj = N + 1) = ω, where zj
indicates a component of the mixture and ω is a parameter

chosen as the outlier ratio. The prior probability of a point

being generated from one of the Gaussian components is

assumed to be uniform, P (zj = i) = (1− ω) 1
N . To lighten

the notation, we denote zij to be a shorthand for zj = i.

2) Registration through Maximum a Posteriori Estima-

tion: The transformation function T is estimated by maxi-

mizing the log-likelihood of the data, which is

logP (Y |X, T , σ2) =
M
∑

j=1

log

N+1
∑

i=1

P (zij)P (yj |zij ,xi, T , σ
2). (1)

We can optimize this objective using the expectation-

maximization (EM) algorithm [22]. Treating the component

indicators zj as latent variables, the EM framework defines

the auxiliary function,

L(q, T , σ2) =

M
∑

j=1

N+1
∑

i=1

q(zij |yj) log
P (zij)P (yj |zij , T , σ

2)

q(zij |yj)
,

(2)

for an averaging distribution q(zj |yj). The EM algorithm

is a coordinate ascent algorithm on the auxiliary function

L(q, T , σ2), which is bound on the log-likelihood [22].

In the expectation step (E-step), we fix the latest trans-

formation T and variance σ2 estimates and maximize the

auxiliary function with respect to the averaging distribution

q and obtain a new optimum that we denote as pij :

pij = argmax
q
L(q, T , σ2) =

e
−‖yj−T (xi)‖

2
/2σ2

∑N
i′=1 e

−‖yj−T (x
i′

)‖
2
/2σ2

+ γ
,

(3)

where γ = (2πσ2)D/2 ω
1−ω

1
M .

In the maximization step (M-step), we fix the latest

distribution estimate pij and maximize the auxiliary function

with respect to T and σ2 and obtain a new optimum,

{T , σ2} = argmax
T ,σ2

L(q, T , σ2) = argmin
T ,σ2

E(T , σ2),

where E is the energy function

E(T , σ) =
1

2σ2

N
∑

i=1

M
∑

j=1

pij‖yj − T (xi)‖
2 +

NPD

2
log σ2,

and NP =
∑N

i=1

∑M
j=1 pij .

In order to manipulate deformable objects, we typically

want a non-rigid transformation. Such transformations have

many degrees of freedom and require some prior distribution

to recover reasonable warps. To that end, we use the prior

P (T ) ∝ exp
(

−λ
2R(T )

)

, where λ is a parameter and R is

a regularizer. To obtain a smooth transformation T , we use

the thin plate spline regularizer, which is discussed in the

next section. Incorporating this prior requires maximizing

the posterior P (T |Y , σ2) instead of the likelihood. This is

equivalent to modifying the M-step update to be

{T , σ2} = arg min
T ,σ2

E(T , σ2) + λ
2R(T ). (4)

C. Thin Plate Splines

As in the previous work that uses non-rigid registration for

trajectory transfer [1], we use the thin plate spline (TPS) [18],

[19] parametrization for the transformation T , which can be

obtained by regularizing the second-order derivatives of the

transformation. The TPS regularizer is given by

‖T ‖
2
TPS =

∫

dx
∥

∥D2T (x)
∥

∥

2

F
, (5)

which is a measure of the curvature of T and encourages

the mapping to be as smooth as possible. The optimal

transformation that minimizes such regularizer can be found

analytically and has the form

T (x) =
∑

i

aik(xi,x) +Bx + c. (6)

This corresponds to an affine transformation defined by B

and c, plus a weighted sum of basis functions centered

around the data points, given by k(xi,x) = −‖x− xi‖
2
.

We follow prior work [1] and use

R(T ) = ‖T ‖
2
TPS + (B − I)⊤ diag(r)(B − I), (7)

where the second term is weighted by r ∈ R
D and regular-

izes the affine part to be close to the identity matrix I .

IV. LEARNING FROM MULTIPLE DEMONSTRATIONS

USING TRAJECTORY-AWARE REGISTRATION

While the registration method described in the previous

section can be used to transfer demonstrations for a variety

of deformable object manipulation tasks, as shown in prior

work [1], it is not informed by the task. The demonstrated

trajectory is transformed by a non-linear warping function

that aligns the demonstration point cloud to the current point

cloud, under the assumption that this point cloud transforma-

tion is also appropriate for transforming the trajectory. When

the two point clouds correspond to the same object, this

assumption is reasonable, since points at which the trajectory

interacts with the object remain on the object’s surface.

However, in natural environments, the point clouds will



rarely correspond to exactly the same object, so registering

all points correctly is impossible. The question then arises:

which points are more important to align correctly?

We use multiple demonstrations by extending the prob-

abilistic framework in the previous section to model the

point clouds of all the demonstrations, as well as the gen-

eration of trajectories in the test scene. The assumption is

that if all of the demonstration trajectories are transformed

by the (unknown) correct warp for the test scene, then

these transformed trajectories are generated from the same

distribution. This assumption is very natural, since all of

the demonstrations belong to the same behavior, and the

only variation between them is due to the arrangement of

the scene. Optimizing the posterior probability of the new

model results in an intuitive registration objective. It encodes

our preference for registrations that also puts all of the

demonstrations into alignment.

We combine K demonstrations of the same task to obtain

a single trajectory in the test scene. To obtain the nonlinear

transformation for each demonstration trajectory, we jointly

optimize the registration functions T 1, . . . , T K for all of the

demonstration point clouds together with an objective term

that quantifies the degree to which the warped trajectories are

aligned. Note that this procedure requires multiple demon-

strations to be available in order to be trajectory-aware, since

minimizing the alignment of a single trajectory with itself

does not yield a meaningful objective.

In this section, we first describe how to extend the CPD

model to register multiple demonstrations to the test scene,

and then show how the model can be augmented to con-

sider the distribution over transformed trajectories. Our full

probabilistic model is summarized in Figure 3.

A. Non-Rigid Registration from Multiple Point Clouds

In order to learn from multiple demonstrations, we register

all of the demonstration point clouds to the test scene.

Let Xk =
[

xk
1 · · · xk

Nk

]⊤
denote the point cloud for

demonstration Dk. We can register each of the demonstration

scenes onto the test scene by finding K transformation

functions T 1, . . . , T K that map points from each demon-

stration to the test scene. This corresponds to an extended

probabilistic model where the target points are still generated

from a Gaussian mixture, but now the centroids are the

deformed source points from multiple demonstrations, with

the centroids from demonstration Dk warped by T k.

The full Gaussian mixture has NK+1 components, where

NK =
∑K

k Nk is the total number of source points. The

first NK components are Gaussian with mean x̃
k
i = T k(xk

i )
and variance σ2. As before, the last component is uniformly

distributed. The prior probability P (zkij) of a component

remains the same as before, where zkij now indexes the point i

within demonstration Dk. The mixture model takes the form

P (yj |x
k
i , T

1:K , σ2) =

(1− ω)
1

NK

K
∑

k

Nk
∑

i

P (yj |z
k
ij ,x

k
i , T

k, σ2) + ω
1

M
. (8)

M

N

K

T

ν

Ψt Σt µt λ, r

qk
t q̃

k
t

φ̃
k

i
xk
i x̃

k
i

σ2
φ

φj zj yj σ2

T k

ω

Fig. 3: Graphical model describing the generation of target points
yj and features φj from a Gaussian mixture. Each Gaussian for the

points has mean x̃k
i = T k(xk

i ) and variance σ2, each Gaussian for

the features has mean φ̃
k

i and variance σ2

φ, zj = {i, k} indicates

the component i from demonstration Dk from which the point yj

and feature φj are generated, λ and r control the regularization
of the transformation, and ω is the outlier probability. In addition,
each transformed trajectory point q̃k

t = T k(qk
t ) is generated from

independent Gaussians with mean µt and covariance Σt with prior
parameters Ψt and ν.

The transformation functions T 1:K are estimated by jointly

maximizing the posterior probability of the transformations,

P (T 1:K |Y ,X1:K , σ2). As before, we use the EM algorithm.

The E-step update is similar to Equation (3), but with mixing

proportions pkij for each demonstration Dk. In the M-step,

we optimize with respect to the transformations T 1:K and

variance σ2 by minimizing the following objective

Epoints(T
1, . . . , T K , σ2) =

NPD

2
log σ2

+
1

2σ2

K,Nk,M
∑

k,i,j

pkij
∥

∥yj − T
k(xk

i )
∥

∥

2
+

λ

2

K
∑

k

R(T k), (9)

where NP =
∑K,Nk,M

k,i,j pkij . In a single M-step, we first

jointly optimize the transformations T 1:K while holding the

variance σ2 fixed, and then we optimize for the variance

while holding the transformations fixed. This corresponds to

the generalized EM algorithm [23].

We also model features φ̃
k

i ,φj ∈ R
Dφ of the points with a

similar mixture model, where the components are Gaussian

with mean φ̃
k

i and variance σ2
φ. For more details, see the

Appendix.

This registration does not yet incorporate trajectory infor-

mation. In the experiments, we will refer to this approach

as the ablated method, and will show that incorporating

trajectory-aware terms leads to a better registration.



B. Trajectory-Aware Non-Rigid Registration

While using multiple demonstrations already leads to

better registration due to the improved outlier handling, it is

not informed by the particular task at hand. When the scene

at test time differs structurally from all of the demonstrations,

simply detecting outliers may not be sufficient, since it may

not even be feasible to register the inliers without excessive

distortion. However, if we use the demonstrated trajectories

to automatically decide which parts of the scene are relevant,

we can handle significantly greater variation.

We derive a trajectory-aware registration by adding the

demonstrated trajectories to the probabilistic model. In addi-

tion to the generation of points in the test scene, the model

also explains the generation of trajectory points in the test

scene. We parametrize a trajectory as a sequence of points

in R
D. These could be points on the robot’s manipula-

tor or finger as done in [13]. Let Qk =
[

qk
1 · · · qk

T

]⊤

be the trajectory of points of length T for each demon-

stration Dk. These variables are observed, since they are

part of the demonstration. Let Q̃k =
[

q̃
k
1 · · · q̃

k
T

]⊤
be

the transformed points, with q̃
k
t = T k(qk

t ). We model the

transformed points at each time as being generated from

a Gaussian distribution, with different Gaussians for each

time step. The Gaussian at time step t has mean µt and

covariance Σt. The desired trajectory for the test scene is the

mean trajectory. The probability density of the transformed

trajectory points is given by

P (q̃k
t |q

k
t , T

k,µt,Σt) =
exp

(

− 1
2

∥

∥T k(qk
t )− µt

∥

∥

2

Σ
−1
t

)

(2π)D/2 |Σt|
1/2

,

where ‖q − µ‖
2
Σ−1 = (q − µ)

⊤
Σ−1 (q − µ).

The parameters of these Gaussian distributions are hidden

variables since they are in the transformed space and the

transformations are unknown beforehand. Since there are

only K data points for fitting each of these Gaussians, esti-

mating their parameters is prone to overfitting. To overcome

this, we add an inverse Wishart prior on their covariances,

with scaling matrix Ψt and degrees of freedom ν. The prior

probability of the covariance Σt is then given by

P (Σt) =
|Ψt|

ν/2

2
νD
2 ΓD

(

ν
2

)

|Σ|
−

ν+D+1
2 exp

(

−
1

2
Tr
(

ΨtΣ
−1
t

)

)

.

The parameter Ψt reflects the relative importance of the

trajectory at time step t for the registration. Intuitively,

points that are closer to objects in the scene are more

important, since the robot interacts with the world primarily

by touching it with its grippers. Points on the trajectories

that are far away from objects tend to exhibit greater

random variability during the demonstrations, and are less

critical to align properly in order to execute the task.

Therefore, we set the parameter Ψt to be a diagonal matrix

proportional to the average distance of the closest point,

Ψt = α( 1
K

∑K
k=1 dkt)I , where α is a proportionality con-

stant and dkt = mini∈{1,...,NK}

∥

∥qk
t − xk

i

∥

∥ is the minimum

distance between the position in the trajectory at time step t

and the point cloud in demonstration Dk.

We estimate the parameters of these Gaussians, along with

the other parameters of the model, by maximizing the pos-

terior probability P (T 1:K ,Σ1:T |Y ,X1:K , σ2,Q1:K ,µ1:T ).
The E-step remains unchanged, while the M-step now also

optimizes over the trajectory covariances Σ1:T by adding the

following term to the objective

Etrajectories(Σ1, . . . ,ΣT , T
1, . . . , T K) =

1

2

T
∑

t

K
∑

k

∥

∥

∥

∥

∥

T k(qk
t )−

1

K

K
∑

k′

T k′

(qk′

t )

∥

∥

∥

∥

∥

2

Σ
−1
t

+
ν +K +D + 1

2

T
∑

t

log |Σt|+
1

2

T
∑

t

Tr
(

ΨtΣ
−1
t

)

.

In order to ensure that all trajectories Q1:K are of length

T , we preprocess the demonstrations by using dynamic

time warping (DTW) [24] to align all of the demonstration

trajectories to the first trajectory in the set.

C. Trajectory Transfer

After solving the trajectory-aware non-rigid registration

optimization problem, we can compute the mean of the

warped trajectory points, µt =
1
K

∑K
k T

k(qk
t ). Using these

points as the transferred trajectory, we follow prior work [13]

and use trajectory optimization to find a feasible joint angle

trajectory that follows the points µ1, . . . ,µT . In our exper-

iments, we take the trajectory points to be the points at the

center of each finger of the robot. Multiple points per time

step can be modeled by treating each of them as happening

at separate time steps since, in our model, the Gaussian

trajectories are independent of each other across time steps.

V. ALGORITHM SUMMARY

We have presented a probabilistic model that models the

generation of point clouds, trajectories, and features for the

test scene. We find a trajectory-aware non-rigid registration

by optimizing the posterior probability of the graphical

model in Figure 3,

P (T 1:K ,Σ1:T |Y ,X1:K , σ2,Q1:K ,µ1:T ,Φ, Φ̃
1:K

, σ2
φ) ∝

P (Y |X1:K , T 1:K , σ2)P (T 1:K)

P (Q̃1:K |Q1:K , T 1:K ,µ1:T ,Σ1:T )P (Σ1:T )

P (Φ|Φ̃
1:K

, σ2
φ). (10)

We optimize the posterior probability using the EM algo-

rithm. In the E-step, we update the point correspondences

between points and features in the demonstration scenes and

the test scene,

pkij =
e
−‖yj−T k(xk

i )‖
2
/2σ2

e
−‖φj−φ̃

k
i ‖

2
/2σ2

φ

K,Nk
∑

k′,i′
e
−

∥

∥

∥

∥

yj−T k′
(

xk′

i′

)∥

∥

∥

∥

2
/2σ2

e
−

∥

∥

∥

∥

φj−φ̃
k′

i′

∥

∥

∥

∥

2
/2σ2

φ + γ

, (11)

where γ = (2πσ2)D/2(2πσ2
φ)

Dφ/2 ω
1−ω

1
M2 .



In the M-step, we minimize the following objective func-

tion,

1
2σ2

K,Nk,M
∑

k,i,j

pkij
∥

∥yj − T
k(xk

i )
∥

∥

2

+NP D
2 log σ2 + λ

2

K
∑

k

R(T k)



























Epoints

+ 1
2

T,K
∑

t,k

∥

∥

∥

∥

∥

T k(qk
t )−

1
K
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k

i
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+
NP Dφ

2 log σ2
φ

}

Efeatures

The first and last term minimizes the residual of the target

points and features, and the warped source points and fea-

tures from all the demonstrations, weighted by their corre-

spondences. To enforce the smoothness of the transformation

functions, we penalize each of them with the regularizer

of Equation (7). The second term minimizes the weighted

sum of the spatial variances of the warped trajectory points

across demonstrations. In the special case that each of the

trajectory covariances is fixed to be the diagonal matrix

Σt =
K
wt

I , with weights wt, this objective term is equivalent

to a weighted sum of the trace of the empirical covariances

of the warped trajectories.

VI. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation

of our trajectory-aware non-rigid registration approach for

learning from demonstrations on a PR2 robot. We compare

our method against TPS-RPM with a single demonstration as

in previous work [1], CPD with a single demonstration and

the ablated method of Section IV-A that registers multiple

demonstrations without using any trajectory information.

The demonstrations were obtained through kinesthetic

teaching, and the green table was removed from the point

clouds by using a color filter. The registration features con-

sisted of RGB color. We used the same hyperparameters in all

experiments: the outlier ratio was ω = 0.8, the regularization

parameters were λ = 100 and r = [10, 10, 10], the feature

variance initialization was σ2
φ = 0.1, and proportionality

constant for the trajectory covariance prior was α = 10.

A. Pick and Place from a Box with a PR2

We evaluated our approach on two pick and place tasks,

which consisted of two different behaviors demonstrated for

very similar scenes. The two tasks are shown in Figure 4.

In the first task, shown in Figure 4a, the goal was to pick

up the item in the top right corner of the box, regardless of

its shape or color. In the second task, shown in Figure 4b,

the goal was to always grasp the white item, regardless of

its position. The last two demonstrations for both tasks were

the same, due to the placement of the white object. The test

(a) Picking up an item from the corner of a box.

(b) Picking up a white item from a box.

Fig. 4: Demonstrations of picking up an item from the box and
placing it on the table.

(a) (b)

Fig. 5: Test scenes for the box tasks, (a) one with the red item in
the corner and (b) the other one with the white item in the corner.

scene is shown in Figure 5, and comparisons on this scene

are presented in Table I.

In the first task, all four methods are able to grab the item

in the corner of the box. Without any trajectory information,

the single-demonstration methods and the ablated method

register as many points as possible, which in this case are

the points on the box. This leads to a good registration

of the box and causes the trajectories to grasp the object

in the corner. In the second task, TPS-RPM, CPD and the

ablated method all fail to grasp the white item. The single-

demonstration methods do not capture information from

multiple demonstrations and instead just take the demon-

stration closest to the test scene and warp its trajectory.

When none of the demonstration scenes are similar to the test

scene, the registration is poor and the transferred trajectory

is ineffective. The ablated method registers the box at the

expense of the target object, producing trajectories that reach

for different parts of the box. Our trajectory-aware approach

is able to capture the critical aspect of the task: the only thing

that matters is the target object, since putting this object into

correspondence aligns all demonstrated trajectories.

Although the prior methods are successful on one of the

two tasks, our approach succeeds on both, since it is correctly

able to infer which part of the scene is the most important

to the task at hand by using the trajectory alignment term.

Method Pick item at the corner Pick white item

5a 5b 5a 5b

TPS-RPM yes yes no no
CPD yes yes no no

Ablated close yes no no
Trajectory-aware yes yes close yes

TABLE I: Successes of grasping the desired item, which is the
item at the corner of the box for the first task and the white item
for the second task. The successes for each of the two test scenes
of Figure 5 are reported for each task and registration method.
We report close when the gripper goes to the right location but
misgrasps.



B. Towel Folding with a PR2

We also evaluate our approach on two towel folding tasks.

The setups of these tasks are shown in Figure 6. Each of the

tasks requires folding the towel, but the correct position of

the fold differs between the tasks. In the first task, shown in

Figure 6a, the robot must grasp the right edge of the towel

and fold it to a fixed amount (three fourth of its length). In the

second task, shown in Figure 6b, the robot must instead fold

the towel such that the edge aligns with the white stripe. We

recorded demonstrations with the stripe at different positions,

as shown in Figure 6, but the same set of stripe positions was

used for both tasks, so that only the motion differed. The

second demonstration for both tasks was identical, since the

stripe was three fourths of the way along the towel. In order

to succeed at this task, the robot must associate the motion

with the right cue—either the edge of the towel, or the stripe.

The test scene is shown in Figure 7.

In the first task, all three methods come close to folding the

towel to three fourths of its length. The single-demonstration

methods succeed because the scene of the closest single

demonstration matches its whole towel well with the target

towel. This results in a warped trajectory leading to the

correct location at three fourths the length of the towel. For

the ablated method, although the stripes weren’t registered

across the demonstrations, the whole towel matched the

target towel, and the average trajectory brought the fold to

three fourths of the length. With our method, the registration

also aligns the whole towel, since the trajectories always

travel the same distance and ignore the stripe.

In the second task, our method consistently placed the

edge of the towel closest to the stripe. A quantitative evalu-

ation of the final distance of the edge to the stripe is given

in Table II. We can see that both of the single-demonstration

methods missed the stripe, since the towel itself contains

many more points, and the algorithm is not aware of the

special importance of the stripe. The ablated method also

did not correctly register the stripe, as shown in the point

cloud renderings. Since our method minimized the variance

of the trajectories, it was able to correctly pick out the stripe

as the relevant cue in the scene. The registrations are shown

in Table III.

These experiments show that the trajectory-aware regis-

tration method is able to correctly identify the relevant parts

of the scene, while both the prior methods and the ablated

method naı̈vely attempt to register the dissimilar scenes to

one another without a careful consideration for the task.

VII. DISCUSSION AND FUTURE WORK

We presented a trajectory transfer method based on

trajectory-aware non-rigid registration. Our approach trans-

fers multiple demonstrated trajectories to a new scene by

finding a non-linear warp that, along with aligning the point

clouds, also aligns all of the demonstrated trajectories. By

finding a transformation that minimizes the variance of points

along the demonstrated trajectories, our method implicitly

reduces the impact of irrelevant distractor points, thus im-

proving generalization and robustness when compared to

(a) Folding to three fourths of the towel regardless of the placement
of the white stripe.

(b) Folding towards the center of the white stripe.

Fig. 6: Demonstrations of folding a towel where the white stripe
on the towel is sometimes used as a reference. The stripes were
placed at 1/2, 3/4th and the end of the towel.

(a) 5/8th (b) 7/8th (c) End

Fig. 7: Test scenes for the towel tasks, with the stripe at 5/8th,
7/8th, and the end of the towel.

standard registration methods, which are not trajectory-aware

and do not effectively exploit multiple demonstrations.

Our experiments demonstrate that our approach can per-

form complex tasks that require associating cues in the envi-

ronment with parts of the demonstration. Such cues include

the corner of the box and the top of the white object, as well

as the stripe in the towel folding task. The results show that

our trajectory-aware method achieves better generalization

by using task-appropriate cues in the registration.

Although our method is trajectory-aware, we use a rel-

atively simple geometric measure of trajectory agreement,

based on the variance of the points along the multiple

trajectories. While this approach is simple and effective in

our experiments, it is not aware of the goals of the task,

and does not make any attempt to determine which parts

of each trajectory are more or less important. For instance,

a demonstration that involves grasping might require much

more precise positioning of the gripper during the grasp than

during the rest of the motion. Our weighting scheme encodes

a hand-specified notion of importance based on the distance

between the objects in the point cloud, but this weighting

is not adapted to the data. In future work, this kind of

information could be recovered automatically by combining

Method Fold to three fourths Fold to stripe

7a 7b 7c RMS 7a 7b 7c RMS

TPS-RPM 3.8 1.3 1.3 2.4 22.9 4.4 3.3 13.6
CPD 3.8 0.6 1.3 2.3 31.1 5.1 34.3 26.9

Ablated 0.6 1.5 5.7 3.4 10.8 5.8 7.6 8.3
Trajectory-

aware
0.6 5.8 7.6 5.6 6.4 0.6 1.3 3.8

TABLE II: Distance errors (in cm) of the towel edge and the desired
positions, which is three fourths of the towel for the first task and
the center of the white stripe for the second task. The errors for
each of the three test scenes of Figure 7 and the root mean square
(RMS) of them are reported for each task and registration method.



Method TPS-RPM CPD Ablated Trajectory-aware

Fold to
three

fourths

Fold to
stripe

TABLE III: Results of towel folding with a PR2. Each row corresponds to a different task and the column compares our methods against
using a single-demonstration with TPS-RPM and CPD, and using an ablated version of our method. The images show a snapshot of
the execution. For videos, see http://rll.berkeley.edu/iros2015lfmd/. The renderings visualize the test point cloud, the
transferred gripper trajectories as dashed lines, and the mean of them as a solid line.

our approach with goal learning techniques, such as inverse

reinforcement learning and inverse optimal control [25], [26],

[27], [28]. An exciting avenue for future work would be to

explore this direction and develop a non-rigid registration

method that is not only trajectory-aware, but also goal-aware.
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APPENDIX I

INCORPORATING FEATURES IN THE NON-RIGID

REGISTRATION

The registration works well when the relevant part of

the object looks distinctive from the rest of it. This is

because the trajectory-aware registration uses the trajectories

to align the demonstration point clouds and thus learn the

relevant part of the object for the task. However, if that

part is indistinguishable, then the algorithm has no way of

identifying the relevant part of the test object. This could

happen if the distinction is in visual appearance but not in

the spatial points.

For this reason, we also explicitly model visual features

in our probabilistic model. Let the features of the source

point set be Φ̃
k
=
[

φ̃
k

1 · · · φ̃
k

NK

]⊤

and the features of

the target point set be Φ =
[

φ1 · · · φM

]⊤
, with features

φ̃
k

i ,φj ∈ R
Dφ , where Dφ is the dimension of the features.

The feature φ̃
k

i corresponds to point xk
i and the feature

φj corresponds to point yj . Unlike the points, we assume

that the features are invariant to the transformation function.

In our experiments, we use the RGB color of the point

as the feature for that point. That is, the feature is a 3-

dimensional vector with one color channel per entry and the

domain of each channel is between 0 and 1. The probabilistic

model resembles the mixture in Section IV-A but now the

components are Gaussian with mean φ̃
k

i and variance σ2
φ,

P (φj |φ̃
k

i , σ
2
φ) =

(1− ω)
1

NK

K
∑

k

Nk
∑

i

P (φj |z
k
ij , φ̃

k

i , σ
2
φ) + ω

1

M
. (12)

We estimate the parameters by maximizing the posterior

P (T 1:K ,Σ1:T |Y ,X1:K , σ2,Q1:K ,µ1:T ,Φ, Φ̃
1:K

, σ2
φ). The

M-step now also optimizes over the variance σ2
φ and con-

tributes the following term to the objective

Efeatures(σφ) =
1

2σ2
φ

K,Nk,M
∑

k,i,j

pkij

∥

∥

∥
φj − φ̃

k

i

∥

∥

∥

2

+
NPDφ

2
log σ2

φ.

(13)

APPENDIX II

COHERENT POINT DRIFT WITH THIN PLATE SPLINES IN

CLOSED-FORM

The thin plate spline form of Equation (6) uses a weighted

sum of basis functions centered around the data points. In this

section we consider the general case in which the basis func-

tions are centered around any points. These points are called

control points, which we denote as X̂ =
[

x̂1 · · · x̂
N̂

]⊤
.

In our experiments, the control points that we use are points

of a downsampled version of the source point cloud. This

reduces the number of variables to optimize, which gives us

computation speedup without any noticeable effect on the

expressiveness of the thin plate spline transformation. The

closed form of the thin plate spline is then [18], [19]

T (x) =

N̂
∑

i=1

aik(x̂i,x) +Bx + c, (14)

where the basis function is given by k(x̂i,x) = −‖x − x̂i‖
2

and the weights A =
[

a1 · · · aN̂

]⊤
are constrained by

A⊤
[

X̂ 1N̂×1

]

= 0D×(D+1). (15)

Let U X̂

X
be a matrix of basis functions between the control

points X̂ and points X ,

U X̂

X
=







k(x̂1,x1) · · · k(x̂
N̂
,x1)

...
. . .

...

k(x̂1,xN ) · · · k(x̂
N̂
,xN )






(16)

We can write the transformation of points X in matrix form

as

T (X ) = U X̂

X
A +XB⊤ + 1c⊤ = GX̂

X
Θ,

GX̂

X
=
[

U X̂

X
X 1N×1

]

, Θ =





A

B⊤

c⊤



 .

The application of the transformation T to a matrix X is

defined to be the element-wise application of the transfor-

mation to the vectors in X .

The thin plate spline regularizer of Equation (5) can be

expressed in closed form as

‖T ‖
2
TPS = Tr

(

A⊤U X̂

X̂
A
)

. (17)

The parameters Θ of the thin plate spline are constrained

by Equation (15). Alternatively, we can use unconstrained

parameters Z by using the change of variables,

Θ = N X̂Z , (18)

N X̂ =





I(D+1)×(D+1) 0

0 null

(

[

X̂ 1N̂×1

]⊤
)



 . (19)

The optimization problem of Equation (4) with respect to

the transformation T is equivalent to

min
Z

1

2
Tr(Z⊤HZ )− Tr(Z⊤f), (20)

where

H =
1

σ2
(GX̂

X
N X̂ )⊤ d(P1)(GX̂

X
N X̂ )

+λ(N X̂ )⊤SX̂N X̂ ,

f =
1

σ2
(GX̂

X
N X̂ )⊤PY + λ(N X̂ )⊤sX̂ ,

SX̂ =





U X̂

X̂
0 0

0 d(r) 0

0 0 0



 , sX̂ =





0N̂×D

d(r)
01×D



 .

The operator d(·) constructs a diagonal matrix from the

elements of a vector, or a block diagonal matrix from a

sequence of matrices.

The optimal thin plate spline is given by the parameters

Z = H−1f , or Θ = N X̂H−1f .



APPENDIX III

TRAJECTORY-AWARE NON-RIGID REGISTRATION IN

CLOSED-FORM

As summarized in Section V, in the E-step we update the

correspondences as given by Equation (11), and in the M-

step we minimize the objective

Epoints(T
1:K , σ2) + Etrajectories(Σ1:T , T

1:K) + Efeatures(σφ)

with respect to the transformations T 1:K , the point and

feature variances σ2 and σ2
φ, and the trajectory covariances

Σ1:T . The variables of the objective above cannot be opti-

mized jointly in closed-form. However, each of those sets of

variables can be optimized in closed-form while holding the

other ones fixed. In that case, the optima are given by

T 1:K = arg min
T 1:K

1

2σ2

K,Nk,M
∑

k,i,j

‖yj − T
k(xk

i )‖
2

+
λ

2

K
∑

k

R(T k) +
1

2

T,K
∑

t,k

∥

∥

∥

∥

∥

T k(qk
t )−

1

K

K
∑

k′

T k′

(qk′

t )

∥

∥

∥

∥

∥

2

Σ
−1
t

(21)

σ2 =
1

NPD

K,Nk,M
∑

k,i,j

pkij
∥

∥yj − T
k
(

xk
i

)
∥

∥

2
(22)

σ2
φ =

1

NPDφ

K,Nk,M
∑

k,i,j

pkij

∥

∥

∥
φj − φ̃

k

i

∥

∥

∥

2

(23)

Σt =
Ψt +KΣ̂t

ν +K +D + 1
, (24)

where NP =
∑K,Nk,M

k,i,j pkij and Σ̂t is the empirical covari-

ance of the transformed trajectory points,

Σ̂t =
1

K

K
∑

k

(

q̃
k
t −

1

K

K
∑

k′

q̃
k′

t

)(

q̃
k
t −

1

K

K
∑

k′

q̃
k′

t

)⊤

,

with q̃
k
t = T k(qk

t ) being a function of the transformation

T k.

Denote Z =
[

(Z1)⊤ . . . (ZK)⊤
]⊤

to be the con-

catenation of the parameters Z1, . . . ,ZK for the respective

transformations T 1, . . . , T K . The optimization of Equa-

tion (21) is a quadratic function of the parameters Z so

it can be solved in closed-form. The optimization has the

form of Equation (20), but now the matrices H and f are

block-diagonal versions of the ones in the previous section.

We constrain Σt = σ2
qt
I to be a diagonal matrix with the

same variance along the diagonal. In this case, the update of

Equation (24) can further be simplified to

σ2
qt

=
Tr(Ψt +KΣ̂t)

D(ν +K +D + 1)
. (25)

The overall algorithm is summarized in Algorithm 1 and

it includes the closed-form updates for the M-step. We set

ν = K+2 in our implementation, which is a standard default

choice.

Algorithm 1 Trajectory-Aware Non-Rigid Registration

1: procedure TRAJAWAREREG(X1:K ,Y , Φ̃
1:K

,Φ,Q1:K ,

ω, λ, r,Ψ1:T , ν)

2: ⊲ Precomputation

3: N ← d(N X̂
1

, . . . ,N X̂
K

)

4: GN ← d(GX̂
1

X1N
X̂

1

, . . . ,GX̂
K

XKN X̂
K

)

5: S ← d(SX̂
1

, . . . ,SX̂
K

)

6: s ←
[

(sX̂
1

)⊤ · · · (sX̂
K

)⊤
]⊤

7: for all t ∈ {1, . . . , T} do

8: Lt ← d(GX̂
1

q1
t
N X̂

1

, . . . ,GX̂
K

qK
t

N X̂
K

)

9: end for

10: ⊲ Initialization

11: σ2 ← 1
DNKM

∑K,Nk,M
k,i,j ‖yj − xk

i ‖
2

12: σ2
φ ←

1
DφNKM

∑K,Nk,M
k,i,j ‖φj − φ̃

k

i ‖
2

13: for all t ∈ {1, . . . , T} do

14: σ2
qt
← 1

D Tr(Ψt)
15: end for

16: repeat ⊲ EM loop

17: ⊲ E-step

18: γ ← (2πσ2)D/2(2πσ2
φ)

Dφ/2 ω
1−ω

1
M2

19: for all k ∈ {1, . . . ,K} do

20: for all i, j ∈ {1, . . . , Nk} × {1, . . . ,M} do

21: pkij ←
e
−‖yj−T k(xk

i )‖2/2σ2
e
−‖φj−φ̃

k
i ‖2/2σ2

φ

K,Nk
∑

k′,i′
e
−‖yj−T k′

(xk′

i′
)‖2/2σ2

e
−‖φj−φ̃

k′

i′
‖2/2σ2

φ+γ

22: end for

23: end for

24: P ←
[

(P 1)⊤ . . . (PK)⊤
]⊤

25: ⊲ M-step

26: H ← 1
σ2 (GN )⊤ d(P1)(GN ) + λN⊤SN

+
∑T

t=1
1

σ2
qt

L⊤
t

(

IK×K −
1
K1K×K

)

Lt

27: f ← 1
σ2 (GN )⊤PY + λN⊤s

28: Z ←H−1f

29: Update T 1, . . . , T K with parameters Z

30: X̃ ← GNZ

31: NP ← 1⊤P1

32: σ2 ← 1
NP D

(

Tr(Y ⊤ d(P⊤1)Y )

− 2Tr((PY )⊤X̃ )

+Tr(X̃
⊤

d(P1)X̃ )
)

33: σ2
φ ←

1
NP Dφ

(

Tr(Φ⊤ d(P⊤1)Φ)

− 2Tr((PΦ)⊤Φ̃
1:K

)

+Tr((Φ̃
1:K

)⊤ d(P1)Φ̃
1:K

)
)

34: for all t ∈ {1, . . . , T} do

35: Q̃t ← LtZ

36: µt ←
1
K Q̃⊤

t 1K×1

37: Σ̂t ←
1
K

(

Q̃t − 1µ⊤
t

)⊤ (

Q̃t − 1µ⊤
t

)

38: σ2
qt
← 1

D(ν+K+D+1) Tr(Ψt +KΣ̂t)
39: end for

40: until convergence

41: return T 1, . . . , T K ,µ1, . . . ,µT

42: end procedure
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